AmiBroker Custom Backtester I nterface

Introduction Rev 5 - July 2007

From version 4.67.0, AmiBroker provides a custorokbester interface to allow
customising the operation of the backtester's skpbase which processes the
trading signals. This allows a range of specialagions to be achieved that aren't
natively supported by the backtester. AmiBrokedteto refer to this as the Advanced
Portfolio Backtester Interface, but as it seemisetanore widely referred to as the
Custom Backtester Interface, | will use this lategminology.

Due to the object model used by the backtesterfate, a higher level of
programming knowledge is required than for simpkLAr looping. This document
starts by discussing that model, so is aimed at plelgrammers who are already
proficient and comfortable with basic AFL use, griradexing, and looping. If you
don't understanding looping, then you almost celfavon't understand the custom
backtester interface.

The Object Modd

The modern programming paradigm is called objeerded programming, with the
system being developed modelled as a set of oljeatsnteract. The custom
backtester interface follows that model.

An object can be thought of as a self-containediseox that has certain properties
and can perform certain functions. Internallyat'sombination of code and variables,
where both can be made either private to the iaterof the object only or accessible
from outside for the benefit of users of the ohj@tte private code and variables are
totally hidden from the outside world and are ofimrest to users of the object.
Only developers working on the object itself cdvewt them. Users of the object are
only interested in the code and variables madesadue for their use.

Any variable made accessible to an object's ussalied a property of the object. For
example, the Backtester object has a propertydlkg) called "Equity”, which is the
current value of the portfolio equity during a beskt. Properties can be read and
written much the same as any other variable, jystding them in expressions and
assigning values to them (although some properiegbe read-only). However, the
syntax is a little different due to the fact theyproperties of an object, not ordinary
variables.

An object's code is made accessible to its usemdwding a set of functions that
can be called in relation to the object. Thesetione are called methods of the
object. They are essentially identical to ordinfanyctions, but perform operations
that are relevant to the purpose of the objectexample, the Backtester object has
methods (functions) that perform operations relédeoiacktesting. Methods are called
in much the same way as other functions, but at@syntax is a little different due
to them being methods of an object rather thamargtifunctions.

The aim of the object model is to view the applmats a set of self-contained and
reusable objects that can manage their own furatitgrand provide interfaces for
other objects and code to use. Imagine it as @mdgar to a home entertainment
system, where you buy a number of components (t#)jeke a TV, DVD player,
surround-sound system, and karaoke unit (if ydhaéway inclined!). Each of those
components manages its own functionality and pes/igbu with a set of connectors
and cables to join them all together to creatditta application: the home
entertainment system. The beauty of that arrangeimémat each component
provides a standard interface (if you're lucky) thiédl allow any brands of the other
components to be connected, without those compsi@ving to know the details of
how all the other components work internally, andsiderable choice in the structure
of the final entertainment system constructed. ihyi software objects have
standard interfaces in the form of methods andegunas that allow them to be used
and reused in any software.

Accessing Oject Properties And Methods

To access the properties and methods of an olgmeteed to know not only the
name of the property or method, but also the naintteecobject. In AmiBroker AFL,
you cannot define or create your own objects, osky objects already provided by
AmiBroker. AmiBroker help details all its objectagthods, and properties in the
section "Advanced portfolio backtester interface".

To use real AFL examples, the first object detaitethe help is the Backtester object.
AmiBroker provides a single Backtester object tdqguen backtests. To use the
Backtester object, you first have to get a copiy ahd assign that to your own
variable:

bo = GetBacktesterObject();

The variable "bo" is your own variable, and you cal it whatever you like within
the naming rules of AFL. However, to avoid a lovefbose statements, it's good to
keep it nice and short. Previously you've only tiedh variables that are either
single numbers, arrays of numbers, or strings.vEm®@ble "bo" is none of those,
instead being a new type of variable called analyariable. In this case it holds the
Backtester object (or really a reference to thekBsster object, but | don't want to get
into the complicated topic of references here). Nloat you have the Backtester
object in your own variable, you can access itperiies and methods.

The syntax for referencing an object's propertybgectName.objectPropertior
examplebo.InitialEquity That can then be used the same as any othebblaria
(assuming it's not a read-only property, whichidtiquity is not):

bo.InitialEquity = 10000;
capital = bo.InitialEquity;
gain = (capital - bo.InitialEquity) / bo.InitialEgy * 100;

From this you can see the advantage of keepingbgeiable names short. If you
called the variable "myBacktesterObject”, thentfa last example above you'd end
up with:

gain = (capital - myBacktesterObject.InitialEquitynyBacktesterObject.InitialEquity * 100;
Here I've had to reduce the font size just ta flion a single line.

If a property is read-only, then you cannot perf@my operation that would change
its value. So, using the Equity property whichead-only:

currenteEquity = bo.Equity; /I This is fine
but:
bo.Equity = 50000; /I This is an error!

The same syntax is used to access the methodsoij@ct. The method name is
preceded by the object name with a decimal poinectName.objectMethod(Any
parameters are passed to the method in the sanmeemasto ordinary functions:
objectName.objectMethod(parm1, parm2, parm3)

For example, to call the Backtester object's Add@ud/letric method and pass the
two compulsory parameters Title and Value, a statgrtike this would be used:

bo.AddCustomMetric("myMetric", 1000);

AmiBroker help indicates that this method returnakue of type "bool", which
means boolean and thus can only take the valuesalrd False. However, it doesn't
detail what this return value means. A good guessladvbe that it returns True if the
custom metric was successfully added and Falsg gdme reason it failed to be
added. However, that's only a guess, but a comemson for returning boolean
values. For some of the other methods that retaluneg of type "long", it's more
difficult to guess what they might contain.

Another example with a return parameter:
sig = bo.GetFirstSignal(i);

Here the variable "sig" is another object variabld, this time of type Signal rather
than Backtester. In other words, it holds a Sigigéct rather than a Backtester
object. Unlike the single Backtester object, AmiB¥ocan have many different
Signal objects created at the same time (one fdr #rading signal). As a Signal
object holds the signal data for a particular syhalb@ particular bar, the method
needs to know the bar number, which would typicb#yspecified using a loop index
variable ('i* above) inside a loop:

for (i=0; i < BarCount; i++)

{
.si.g. - bo.GetFirstSignal(i);
}

Once a Signal object has been obtained, its piepeahd methods can be referenced:

sig.PosScore = 0; /[Set position score to zerthisrbar
if (sig.IsEntry()) /I If this bar's signal is ent(puy/short)

{
.

Note that the propertsig.PosScorés a single number, not an array. While the AFL
variable PositionScore is an array, the "sig" dbgedy holds data for a single bar, so
the propertysig.PosScores the position score value for that bar onlysthwsingle
number.

Also note that AmiBroker help is not very clearsmme topics. For example, the
Signal object only has a few methods that indiedtether the current bar contains an
entry, exit, long, or short signal, or has a saaler out signal. However, it doesn't
indicate how you combine these to get the exactildefFor example, how do you tell
the difference between a scale-in and a scalets@aling in to a long position a
combination of IsScale, IsEntry, and IsLong, orhagss just IsScale and IsLong, or
neither of those? In some cases you need to asamd error and see what actually
works (learn how to use the DebugView program witliRACE statements: see
Appendix B). Fortunately for this specific examplee Signal object also has a
property called Type that indicates exactly whaetyhe signal is.

Using The Custom Backtester Interface

To use your own custom backtest procedure, yourfeed to tell AmiBroker that you
will be doing so. There are a few ways of doing:thi

* By setting a path to the file holding the procedurthe Automatic
Analysis Settings Portfolio page. This procedurk tiven be used withll
backtests, if the "Enable custom backtest procédumeckbox is checked.

* By specifying these same two settings in your ABecusing the
functionsSetOption("UseCustomBacktestProc”, Traaf
SetCustomBacktestProc("<path to procedure AFL flleNote that path
separators inside strings need to use two backsdaflr example
"c:\\AmiBroker\\Formulas\\Custom\\Backtests\\MyPait'. Although
why is not important here, it's because a singék&lash is what's called
an escape character, meaning the character(s)taftar have special
meaning rather than just being printable characserso actually have a
printable backslash, you have to put two in a row.

* By putting the procedure in the same file as tei0AFL code and using
the statemerfsetCustomBacktestProc("This tells AmiBroker that there
is a custom backtest procedure but there's nofpatt) because it's in the
current file. This option will be used througholetrest of this document.

The next thing that's required in all backtest pochaes is to ensure the procedure
only runs during the second phase of the backIéstt's achieved with the following
conditional statement:

if (Status("action") == actionPortfolio)

{
}

And finally, before anything else can be done, pyaaf the Backtester object is
needed:

bo = GetBacktesterObject();

So all custom backtest procedures, where theytgeisame file as the other AFL
code, will have a template like this:

SetCustomBacktestProc(™);
if (Status("action") == actionPortfolio)

{
bo = GetBacktesterObject();

/I Rest of procedure goes here

}

If the backtests were using a procedure in the file
c:\AmiBroker\Formulas\Custom\Backtests\MyBacktdét.a

then the first line above in your system AFL codmuld be replaced with:

SetOption("UseCustomBacktestProc", True);
SetCustomBacktestProc("c:\AmiBroker\\Formulas\\Go8\Backtests\\MyBacktest.afl");

and the rest of the procedure would be in the §ipddile. Or, if the same values
were specified in the Automatic Analysis settirthg, two lines above would not be
needed in your AFL code at all, and the procedwelavbe in the specified file.

Custom Backtester Levels

The AmiBroker custom backtester interface provitthese levels of user
customisation, simply called high-level, mid-levahd low-level. The high-level
approach requires the least programming knowlealgye the low-level approach the
most. These levels are just a convenient way affgng together methods that can
and need to be called for a customisation to wamkl, conversely indicate which
methods cannot be called in the same customishéoause their functionality
conflicts. Some methods can be called at all lewatteers only at higher levels, and
others only at lower levels. AmiBroker help detaisich levels each method can be
used with. Naturally, the higher the level andghepler the programming, the less
flexibility that's available.

This document will not detail every single method @roperty available, so the rest
of this document should be read in conjunction vihign AmiBroker help sections
"Advanced portfolio backtester interface” and "Auglicustom backtest metrics".

High-Leve Interface

The high-level interface doesn't allow any custamg®of the backtest procedure
itself. It simply allows custom metrics to be defihfor the backtester results display,
and trade statistics and metrics to be calculatédeaamined. A single method call
runs the whole backtest in one hit, the same aswiecustom backtester interface
isn't used at all.

AmiBroker help has an example of using the higlelénterface to add a custom
metric. See the section called "Adding custom hkestkinetrics”. In essence, the steps
are:

» Start with the custom backtest template above
* Run the backtest

* Get the performance statistics or trade details
» Calculate your new metric

* Add your new metric to the results display

That would look something like this:

SetCustomBacktestProc(");
if (Status("action") == actionPortfolio)

{
bo = GetBacktesterObject(); /I Get backtesbgea
bo.Backtest(); /I Run backtests
stats = bo.GetPerformanceStats(0); Il Get 8tgesct for all trades

myMetric = <calculation using stats>; /[Cabtiel new metric
bo.AddCustomMetric("MyMetric", myMetric); // Atimetric to display

}

As well as just using the built-in statistics andtrits, obtained from the Stats object
after the backtest has been run, it's also possilialculate your metric by examining
all the trades using the Trade object. As sometipasimay still be open at the end of
the backtest, you may need to iterate through thatitlosed trade and open position
lists:

for (trade = bo.GetFirstTrade(); trade; trade =J@iNextTrade())
{

}

for (trade = bo.GetFirstOpenPos(); trade; trad®e SltNextOpenPos())
{

}

In this example, "trade" is an object variableygfeé Trade, meaning it holds a Trade
object. As with the Signal object, AmiBroker carvlanany Trade objects created at
the same time, one for each closed or open trduefifst for loop iterates through
the closed trade list, and the second through ple@ position trade list. The
continuation condition "trade" theoretically meavisle the trade object is not zero,

but in fact "trade" will be Null when the end okthst is reached. However, any
conditional involving a null value is always fals®, this will still work. The five
Backtester object methods GetFirstTrade, GetNegf r&etFirstOpenPos,
GetNextOpenPos, and FindOpenPos all return Nulhvthe end of the list is reached
or if no trade or open position is found.

The for loops are a little different to normal foops in that they don't have a
standard loop index variable like 'I' that gets@meented at the end of each pass.
Instead they call a Backtester object method tdlgetinitial value (the first Trade
object) and then another member to get the nexei@he next Trade object). So the
for loop conditions here are just saying start fibmn first Trade object, at the end of
each pass get the next Trade object, and keep twangntil there are no more Trade
objects (ie. "trade" is Null). The loops are it@rgtthrough the list of trades, not the
bars on a chart. Each Trade object holds the ddtaila single trade.

Putting that code inside the custom backtest tetedaks like this:

SetCustomBacktestProc(");
if (Status("action”) == actionPortfolio)

{
bo = GetBacktesterObject(); /I Get backteshgea
bo.Backtest(); /I Run backtests
for (trade = bo.GetFirstTrade(); trade; tradeo=GetNextTrade())
{
/I Use Trade object here
}
for (trade = bo.GetFirstOpenPos(); trade; trad®.GetNextOpenPos())
{
/I Use Trade object here
}
myMetric = <some result from Trade object citons>;
bo.AddCustomMetric("MyMetric", myMetric); // Adlmetric to display
}

As an example, say we want to calculate the avarageer of calendar days that
winning trades were held for (there's already #4miStats object value for number
of bars, but we want number of calendar days)tikatrwe'll need a function that can
calculate the number of calendar days between atesdLet's call it "DayCount”, a
function that takes two parameters: the entry datkethe exit date, both in
AmiBroker date/time format. Since this documerdb®ut the custom backtester
interface, | don't want to go into how that funatiworks right now. Let's just assume
it does, but the code for such a function is giveAppendix A if you're interested.
Then, for each trade we'll need to know:

» If it was a winning or losing trade
* The entry date
* The exit date

And to calculate the average, we'll need a togpirg for the number of winning trade
days and another total figure for the number afdsa The average is the total number
of days winning trades were held divided by thaltaumber of winning trades.

For the trade details, the Trade object has tHeviodg properties:

* EntryDateTime The entry date & time
* ExitDateTime The exit date & time

and the following method:
* GetProfit() The profit for the trade

Before trying this example, the first time we'vedshis Trade object method, we
make the assumption that the profit will be negafor losing trades and positive for
winning trades, as AmiBroker help doesn't clarifgttdetail (it could be some
undefined value for losing trades). If trial andoemproves that not to be the case, then
we could alternatively try using the Trade objedperties EntryPrice, ExitPrice, and
IsLong to determine if it was a winning or losimgde. As it turns out upon testing,
GetProfit does in fact work as expected.

Note that the Trade object also has a propertgd@diarsinTrade, which looks like it
could potentially be used instead of the datesthaitonly gives the number of bars,
not the number of calendar days.

So, to get the number of calendar days spentrade t we call our DayCount function
passing the entry and exit dates:

DayCount(trade.EntryDateTime, trade.ExitDateTime);

and to determine if it was a winning trade, wheesak-even doesn't count as
winning:

trade.GetProfit() > 0;

The whole procedure would then be:

SetCustomBacktestProc(™);
if (Status("action") == actionPortfolio)

{
bo = GetBacktesterObject(); /I Get backteshgec
bo.Backtest(); /I Run backtests
totalDays = 0; /I Total number of winning days
totalTrades = 0; /I Total number of winningdea
for (trade = bo.GetFirstTrade(); trade; tradeo-GetNextTrade())
{ /I Loop through all closed trades
if (trade.GetProfit() > 0) /I 1f this wasaanning trade
{
totalDays = totalDays + DayCount(tr&tdryDateTime, trade.ExitDateTime);
totalTrades++;
}
} /I End of for loop over all trades
avgWinDays = totalDays / totalTrades; /I Ceadtalaverage win days
bo.AddCustomMetric("AvgWinDays", avgWinDays); Add to results display
}

Note that we only need to consider closed tradéisisnexample, as counting open
positions would not accurately reflect the numtdettays trades were typically held

for. Also, the "totalTrades" variable only countsiming trades, not all trades, since
we're only averaging over winning trades.

When a backtest is run with this custom interfaoe @ report generated, our new
metric "avgWinDays" will be printed at the bottorhtbe report:

Risk-Reward Ratio 1.21 1.21
Ulcer Index n.sz n.sz
Ulcer Performance Index -4.52 -4,52
Sharpe Ratio of krades 0,99 0.99
k-R.atio 0.0574 0.0574
AvgWinDays 326.67

And if we run an optimisation (using a differenchkgest to above), it will have a
column near the right-hand end of the results:

| WL Awg F'rofitl W, Avg, Bars Heldl # af Inser&l * of Lo&ersl L. Tat. Lnssl L. Awg. Lu:ussl L. Aw.. | L. Avg... | .ﬁnginDaysl
4116 125,74 AAa E7.83 -340,489.64 -1.080.92 -B.EF 20.88 151.66
43,88 13022 347 BE.86 -351.835.81 1.013.94 -6.08 21.48 151,33
46,48 136,38 7 BE.73 | -389.716.50 -1.036.65 617 22.28 156,32
£3.48 14591 an EE.03 -363,339.83 -1.065.63 -6.47 20.68 150.68
4321 12841 47 BE.B0 | -351.249.80 -1.041.07 -6.20 21.44 157.83

Note that the reason the "W. Avg Bars Held" coluoesn't seem to agree with the
"AvgWinDays" column (ie. the former goes down wiite latter goes up) is because
the average bars figure includes open positiotisea¢nd of the backtest whereas we
specifically excluded them.

As well as overall metrics per backtest, it's gdessible to include individual trade
metrics in the backtester results. For this, thime added to each Trade object
rather than the Backtester object and the tradebsaed at the end of the procedure.

For example, to display the entry position scoleeagainst each trade in the
backtester results, the following code could beluse

SetCustomBacktestProc(™);
if (Status("action") == actionPortfolio)
{
bo = GetBacktesterObject(); /I Get backtesbgea
bo.Backtest(True); /I Run backtests with nderhsting
for (trade = bo.GetFirstTrade(); trade; tradeo=GetNextTrade())
trade.AddCustomMetric("Score", trade.ScofeAdd closed trade score
for (trade = bo.GetFirstOpenPos(); trade; trad®.GetNextOpenPos())
trade.AddCustomMetric("Score", trade.ScafeAdd open pos score
bo.ListTrades(); /I Generate trades list

}

The first for loop iterates through the closed éréidt and the second through the open
position list to get the entry score value for gMeade listed in the results. Note that
thebo.BackTestall is passed the value "True" in this case &vent the list of trades

being generated automatically by the backtestste&d, they're generated by the
subsequent call to thm.ListTradesnethod.

As another example, say we want to list for eaaiming trade how far above or
below the average winning profit it was as a petage, and similarly for each losing
trade, how far above or below the average loss& & a percentage. For this we
need the "WinnersAvgProfit" and "LosersAvgLoss"ued from the Stats object, and
the profit from the Trade objects for each closade (for this example we'll ignore
open positions). Relative loss percentages ardagisg as negative numbers.

SetCustomBacktestProc(™);

if (Status("action") == actionPortfolio)

{
bo = GetBacktesterObject(); /I Get backtesbgea
bo.Backtest(True); /I Run backtests with nderhsting
stat = bo.GetPerformanceStats(0); // Get Siajesct for all trades
winAvgProfit = stat.GetValue("WinnersAvgProiit"
loseAvgLoss = stat.GetValue("LosersAvgLoss");
for (trade = bo.GetFirstTrade(); trade; tradeo=GetNextTrade())

{ /I Loop through all closed trades
prof = trade.GetProfit(); I/l Get trade praf dollars
relProf = 0; /I This will be profit/avgPibas %
if (prof > 0) /I If a winner (profit > 0)
relProf = prof / winAvgProfit * 100; /Profit relative to average
else /I Else if a loser (profit <= 0)

relProf = -prof / loseAvgLoss * 100; Lbss relative to average
trade.AddCustomMetric("Rel Avg Profit%" |iPeof); // Add metric
} /I End of for loop over all trades
bo.ListTrades(); /I Generate list of trades

Mid-Leve Interface

To be able to modify actual backtest behaviour ntiélevel or low-level interfaces
must be used. New metrics can also be calculatébse levels, but since that's
already covered above, this section will only l@dkvhat backtest behaviour can be
modified at this level. Essentially this means gsBignal objects as well as the
Backtester object.

With the mid-level interface, each trading sigrtagéach bar can be examined and the
properties of the signals changed, based on the\adlother Signal or Backtester
object properties, before any trades are execuoteithét bar. For example, one
Backtester object property is "Equity", which gitae current portfolio equity, and
one Signal object property is "PosSize", the positize specified in the main AFL
code, so the mid-level interface can allow, forrapée, position size to be modified
based on current portfolio equity.

The custom backtester interface template for alevdt approach, where all the
signals at each bar need to be examined, is:

SetCustomBacktestProc(");
if (Status("action") == actionPortfolio) {

bo = GetBacktesterObject(); /I Get backteshged
bo.PreProcess(); /I Do pre-processing (alwegsired)
for (i = 0; i < BarCount; i++) /I Loop througdll bars
{
for (sig = bo.GetFirstSignal(i); sig; sighe.GetNextSignal(i))
{ /I Loop through all signals at this bar
} /I End of for loop over signals at thiarb
bo.ProcessTradeSignals(i); /I Process s$ratibar (always required)
} /I End of for loop over bars
bo.PostProcess(); /I Do post-processing (alweqgsired)

}

In this example, the variable "sig" is an objeatafale of type Signal, meaning it
holds a Signal object. As with the Trade objedhim earlier example, the inner for
loop iterates through the list of signals at eaah bot through all bars on a chart. The
for loop conditions are effectively saying stadrfr the first Signal object for the
current bar, at the end of each pass get the ngxalSobject for the same bar, and
keep doing that until there are no more Signalabjéor the bar (ie. "sig" is Null).
Each Signal object holds the details of one sigh#the current bar (ie. a buy, sell,
short, cover or scale indication for one symbol).

The main differences between the mid-level and-tegiel approaches are:

» The Backtester object's Backtest method is no¢dall

» The Backtester object's ProcessTradeSignals mé&leadled instead at
each bar, after examining and possibly modifyingpes@f the Signal
object properties and/or closed or open Trade bopjaperties.

* Aloop is required to iterate through all barstod thart.

* A nested loop is required inside that one to ieethtough all the signals at
each of those bars.

If a trading decision needs to be based on sone ptioperty of a particular stock,
like it's average daily trading volume for examphen the stock code symbol must
be used to obtain that information. This is avddab the Signal object's "Symbol"
property. However, since the backtester at thisllesvnot run in the context of a
particular symbol, the data must be saved to a ositgogsymbol in the main code (or
perhaps a static variable) and referenced in teoubacktest procedure with the
Foreign function. For example, in the main AFL code

AddToComposite(EMA(Volume, 100), "~evol_"+Name(y,",
atcFlagDefaults | atcFlagEnableInBacktest);

Here the volume EMA array is saved to a separatgosite symbol for each stock
(ie. each composite consists of just a single 3tdedr this to work in backtests, the
atcFlagEnablelnBacktefiag must be used. Then in the custom backtesepiare:

evol = Foreign("~evol_"+sig.Symbol, "V"); /| Gsymbol's volume array
evi = evol[i]; /I Reference a value in the array

As a real example, to limit the number of sharesipased to a maximum of 10% of
the 100 day EMA of the daily volume, and also eaghe position size is no less than
$5,000 and no more than $50,000, the following haia! procedure could be used:

SetCustomBacktestProc(™);
if (Status("action") == actionPortfolio)

{
bo = GetBacktesterObject(); /I Get backteshgec
bo.PreProcess(); /I Do pre-processing
for (i= 0; i < BarCount; i++) /I Loop througl bars
for (sig = bo.GetFirstSignal(i); sig; sigoe.GetNextSignal(i))
/I Loop through all signals at this bar
if (sig.IsEntry() && sig.IsLong()) //fthis signal is a long entry (ie. buy)
{
evol = Foreign("~evol_"+sig.SymbdV,"); // Get stock's composite volume array
psize = sig.PosSize; /I Get positize specified in AFL code
if (psize < 0) /I If it's negatiya percentage of equity)
psize = (-psize/100) * bo.Eguit/ Convert to dollar value using current eguit
scnt = psize / sig.Price; /I Castalnumber of shares for position size
if (scnt > evol[i] / 10) /I If nunelb of shares is > 10% of volume EMA
scnt = evol[i] / 10; /I Limiumber of shares to 10% of EMA value
psize = scnt * sig.Price; [/l \cZdate new position size
}
if (psize < 5000) /I If positioresiis less than $5,000
psize = 0; /I Set to zero sy bignal will be ignored
else
if (psize > 50000) /I If positi size is greater than $50,000
psize = 50000; /I Limit$60,000
}
sig.PosSize = psize; /I Set modifi@sition size back into object
}
} /I End of for loop over signals at thiarb
bo.ProcessTradeSignals(i); /I Process $ratlthis bar
} /I End of for loop over bars
bo.PostProcess(); /I Do post-processing
}

In this example, the statemepdize = (-psize/100) * bo.Equigonverts the
percentage of equity value (which is negative}s@ctual dollar value, using the
Backtester object's Equity property. The tepwize/10Qwhich doesn't actually need
to be inside brackets) converts the negative p&gerto a positive fraction which is
then multiplied by the current portfolio equity.

The statement (sig.IsEntry() && sig.IsLong())calls the two Signal object methods
IsEntry and IsLong to determine if the current sige an entry signal and a long
signal (ie. a buy signal). Remember that&&e operator is equivalent tdiND. An
alternative would be to check if the Signal obge@ype property was equal to one.

The array variable "evol" contains the whole EMAagrrealigned to the number of
bars used by the custom backtest procedure. Pdddedlon't matter here as there
won't be any signals for the stock at any of tHues, and we're only checking the
volume on bars where there is a signal. As "ev@#ri array, at each bar we're only
interested in the value for the current bar, hehegeferences tevol[i].

Finally, as detailed in the AmiBroker help, ther@gobject's Price property gives the
price for the current signal, so there's no neatseooBuyPrice, SellPrice, etc., and the
PosSize property is the signal's position sizeev&bu the current bar. As this is not a

read-only property, it can be both read and madiifie

Another example, to prevent scaling in a posittoat Blready has $50,000 or more in
open position value:

SetCustomBacktestProc(™);
if (Status("action") == actionPortfolio)

{
bo = GetBacktesterObject(); /I Get backteshgec
bo.PreProcess(); /I Do pre-processing
for (i = 0; i < BarCount; i++) /I Loop througtil bars
for (sig = bo.GetFirstSignal(i); sig; sighe.GetNextSignal(i))
{ /I Loop through all signals at this bar
if (sig.Type ==5) /I 1f signal type ssale-in
{
trade = bo.FindOpenPos(sig.Symbdl);Check for open position in stock
if (trade) /I Or could use "if (Nslll(trade))"
if (trade.GetPositionValue() 58000) // If open position value >= $50,000
sig.PosSize = 0; /I Setifhmrs size to zero to prevent purchase
}
}
} /I End of for loop over signals at thiarb
bo.ProcessTradeSignals(i); /I Process $ratléhis bar
/I End of for loop over bars
bo.PostProcess(); /I Do post-processing
}

In this example, as each new scale-in signal isaled, the list of open positions is
checked for an open position in the same stockeséw signal. If an open position
exists, its current value is obtained, and if tredtie is $50,000 or more, the position
size is set to zero to prevent the scale-in froppkaing.

The example combines use of the Backtester otapbal objects and Trade objects
to determine whether or not scale-in of a positbauld be permitted. Note that the
Trade object is returned Null if no open positisriaund. As any comparison with a
null value is always false, provided the test istf@ True condition then the IsNull
function is not needed: ie. "if (trade)" gives g@me result as "if (!IsNull(trade))".
However, if the test is for the negative condititelull is required: ie. "if ('trade)"
won't work (when "trade" is Null it will be treatex False rather than the desired
True) and "if (IsNull(trade))" becomes necessary.

Low-Levd Interface

The low-level interface provides the most flexityilio control backtester operation.
As well as allowing signal properties to be modifié also allows the entering,
exiting, and scaling of trades even if no signasesx

With the low-level interface, each trading signiaéach bar can be examined, the
properties of the signals changed, and tradeseghtekited, and scaled. This could be

used to implement special stop conditions not gediin the ApplyStop function, or
to scale trades based on current portfolio equitypen position value and the like.

The custom backtester interface template for aleoxgl approach is:

SetCustomBacktestProc(™);
if (Status("action") == actionPortfolio)

{
bo = GetBacktesterObject(); /I Get backteshgeat
bo.PreProcess(); /I Do pre-processing
for (i = 0; i < BarCount; i++) /I Loop througdll bars
{
for (sig = bo.GetFirstSignal(i); sig; sighe.GetNextSignal(i))
{ /I Loop through all signals at this bar
} /I End of for loop over signals at thiarb
bo.HandleStops(i); /I Handle programmegstat this bar
bo.UpdateStats(i, 1); /I Update MAE/MFEstar bar
bo.UpdateStats(i, 2); /I Update stats dtlend
} /I End of for loop over bars
bo.PostProcess(); /I Do post-processing
}

Note that this template currently has no tradefopmed in it, as there are a number
of options there depending on the system. Typicailide the signal loop (or
possibly the trades loop) there will be a numbetests for various conditions and
then trades entered, exited, and scaled accordingly

The main differences between the low-level and lene approaches are:

* The Backtester object's ProcessTradeSignals méthuat called.

* The Backtester object's EnterTrade, ExitTrade,2caleTrade methods
are called instead at each bar, after examiningoasdibly modifying
some of the signal properties and/or closed or tyzele properties.

* The Backtester object's HandleStops method musalled once per bar
to apply any stops programmed in the settings ahbyApplyStop
function.

* The Backtester object's UpdateStats method musillesl at least once
for each bar to update values like equity, expqdureE/MFE, etc. The
AmiBroker help is a little vague on how the TimaeteBar parameter
works (the values '1' & '2' in the sample abovaj,ibmust be called
exactly once with that parameter set to two. ludth@lso be called with it
set to one to update the MAE/MFE statistics, buy whkvould be called
with the value set to zero or more than once, binsare.

As an example, let's create a custom backtest guoedhat scales in a long position
by 50% of its injected capital (ie. excluding ptpWwhenever its open position profit
exceeds its total injected capital, which measssitting on 100% or more profit. The
scale-in can be repeated whenever this conditionrscas immediately after each
scale-in, the injected capital will go up by 50%€Tsystem doesn't do any shorting
and no other scaling occurs.

The required conditions therefore are:

* The profit must be greater than the injected chpotacale in.
* The scale-in position size is equal to half thectgd capital.
* No signal is required to perform the scale-in.

The Signal object list is still needed to enter ari all trades, as there's no other
mechanism to do that, but just the Trade objetidieeeded for scaling open
positions. At each bar, each open long positiainéntrade open position list must be
tested for scaling in, and a scale-in performeteafconditions are met.

The test for scale-in then looks like this:

trade.GetProfit() >= trade.GetEntryValue(); // Bntalue is injected capital
The scale-in position size is:

scaleSize = trade.GetEntryValue() / 2; /[l Halfatht injected capital
And the scale-in method call, using the closinggfor scaling, is:

bo.ScaleTrade(i, trade.Symbol, True, trade.GetRyit@"), scaleSize);
Putting it all into our template gives:

SetCustomBacktestProc(™);
if (Status("action”) == actionPortfolio)

{
bo = GetBacktesterObject(); Il Get backtestgect
bo.PreProcess(); /I Do pre-processing
for (i = 0; i < BarCount; i++) /I Loop througdll bars
{
for (sig = bo.GetFirstSignal(i); sig; sigpe.GetNextSignal(i))
/I Loop through all signals at this bar
if (sig.IsEntry() && sig.IsLong()) // @®cess long entries
bo.EnterTrade(i, sig.Symbol, Trsig,Price, sig.PosSize);
else
if (sig.IsExit() && sig.IsLong()) /Process long exits
bo.ExitTrade(i, sig.Symbol, .§igce);
}
} /I End of for loop over signals at thiarb
bo.HandleStops(i); /I Handle programmegstat this bar
for (trade = bo.GetFirstOpenPos(); tradede = bo.GetNextOpenPos())
/I Loop through all open positions
if (trade.GetProfit() >= trade.GetEtatue()) // If time to scale-in
{
scaleSize = trade.GetEntryValugX) / // Scale-in the trade
bo.ScaleTrade(i, trade.Symbol, Ttrede.GetPrice(i, "C"), scaleSize);
}
} /I End of for loop over trades at thig ba
bo.UpdateStats(i, 1); /I Update MAE/MFEtstar bar
bo.UpdateStats(i, 2); /I Update stats asleand
/I End of for loop over bars
bo.PostProcess(); /I Do post-processing

Since we stated that the system doesn't do anyirsipaihe tests fosig.IsLongaren't
really necessary.

The signal for loop processes all entry and egihals generated by our buy and sell
conditions in the main AFL code. As mentioned ahdles is necessary since we're
not calling the ProcessTradeSignals method nowhai's a mid-level method. The
trade open position for loop checks for and proggsdl scaling in. When an exit
signal occurs, the whole position is closed.

Extending this example now to include our customgVainDays metric from the
high-level interface example:

SetCustomBacktestProc(™);
if (Status("action") == actionPortfolio)

bo = GetBacktesterObject(); /I Get backteshgect
bo.PreProcess(); /I Do pre-processing
for (i= 0; i < BarCount; i++) /I Loop througdl bars

for (sig = bo.GetFirstSignal(i); sig; sigpe.GetNextSignal(i))
/I Loop through all signals at this bar
if (sig.IsEntry() && sig.IsLong()) // @®cess long entries
bo.EnterTrade(i, sig.Symbol, Trsig,Price, sig.PosSize);
else

if (sig.IsExit() && sig.IsLong()) /Process long exits
bo.ExitTrade(i, sig.Symbol, .§igce);
}

} /I End of for loop over signals at thiarb
bo.HandleStops(i); /I Handle programmegstat this bar
for (trade = bo.GetFirstOpenPos(); tradegé = bo.GetNextOpenPos())
/I Loop through all open positions
if (trade.GetProfit() >= trade.GetEtatue()) // If time to scale-in
{
scaleSize = trade.GetEntryValu&) / // Scale-in the trade
bo.ScaleTrade(i, trade.Symbol, Ttiede.GetPrice(i, "C"), scaleSize);

}
} /I End of for loop over trades at thigba
bo.UpdateStats(i, 1); /I Update MAE/MFEtstar bar
bo.UpdateStats(i, 2); /I Update stats aslend
/I End of for loop over bars
totalDays = 0; /I Total number of winning days
totalTrades = 0; /I Total number of winningdea

for (trade = bo.GetFirstTrade(); trade; tradeo-GetNextTrade())
/I Loop through all closed trades (only)

if (trade.GetProfit() > 0) /I If this wasadnning trade
{
totalDays = totalDays + DayCount(tr&tdryDateTime, trade.ExitDateTime);
totalTrades++;
}
} /I End of for loop over all trades

avgWinDays = totalDays / totalTrades; // Cadtelaverage win days
bo.AddCustomMetric("AvgWinDays", avgWinDays); Add to results display
bo.PostProcess(); /I Do post-processing

Note that stops are handled before scale-in chgagours, as there's no point scaling
in a trade if it's about to get stopped out onstli@e bar (although it would be
unlikely to satisfy the scale-in condition anywéit was about to get stopped out).

Also note that the Trade object method GetEntry¥akturns the total amount of
injected capital, including all previous scale-maunts. It's not possible to get just
the amount used in the initial purchase. It wowtlially be nice here if the Trade
object had a few user-defined properties, to atlesvuser to persist any values they
wanted to throughout the life of a trade (althotigh could also be done with static
variables). For example, as mentioned above, ihialipurchase amount before any
scaling could be remembered, or perhaps the nuaflienes scaling has occurred
(your system may want to limit scaling in to a nmaim of say three times).

Another similar example, but this time scaling aytosition once it has doubled in
value, removing the initial capital invested (appnaately):

SetCustomBacktestProc(™);
if (Status("action") == actionPortfolio)

{
bo = GetBacktesterObject(); /I Get backteshgec
bo.PreProcess(); /I Do pre-processing
for (i= 0; i < BarCount; i++) /I Loop througl bars
for (sig = bo.GetFirstSignal(i); sig; sighe.GetNextSignal(i))
/I Loop through all signals at this bar
if (sig.IsEntry() && sig.IsLong()) // @®cess long entries
{
bo.EnterTrade(i, sig.Symbol, Trsig,Price, sig.PosSize);
trade = bo.FindOpenPos(sig.Symbol); // Find the trade we just entered
if (trade) /I Or "if (NIsNull(tragg'
trade.MarginLoan = 0; /I Ontili buy, zero margin loan property
}
else
if (sig.IsExit() && sig.IsLong()) /Process long exits
bo.ExitTrade(i, sig.Symbol, .glgce);
}

/I End of for loop over signals at thiarb
bo.HandleStops(i); /I Handle programmegstat this bar
for (trade = bo.GetFirstOpenPos(); tradede = bo.GetNextOpenPos())

{ /I Loop through all open positions
ev = trade.GetEntryValue(); /I Entryuaof trade (ie. initial capital)
if (trade.MarginLoan && trade.GetPrigji>= ev) // Only if MarginLoan is zero
{
trade.MarginLoan = 1; /I Indicateve scaled out once now
bo.ScaleTrade(i, trade.Symbol, &aisade.GetPrice(i, "C"), ev); /I Scale out
}
} /I End of for loop over trades at thigba
bo.UpdateStats(i, 1); /I Update MAE/MFEtsStar bar
bo.UpdateStats(i, 2); /I Update stats asleand
} /I End of for loop over bars
bo.PostProcess(); /I Do post-processing
}

In this example we only want to do the scale-owepnvhich introduces a new
problem: how do we tell whether we've already diboe not? Trial and error shows
that the entry value returned by the GetEntryVahathod halves if you remove half

of the value, so AmiBroker appears to treat a soateof half the value as being half
profit and half original capital. As mentioned abowe really need a Trade object
property here that we can write to with our owromfation. Since we're not using
margin, we can use the MarginLoan property, whartuhately is not read-only. |
tried to use the Score property first, but thahéar out to be read-only, despite
AmiBroker help not mentioning that fact.

This example is mostly the same as the previouslmrtenstead of scaling in, we
now scale out. Again, the trigger condition is finefit being greater than the entry
value (injected capital), but we need to use & statiable to remember whether or
not we've already scaled out the position so tlebmly do it once. As mentioned
above, we can't tell this from the entry value aldwhile the MarginLoan property
was available and writeable in this case, it wdagdnuch better, as already
mentioned, if Trade objects had some user-definataperties.

And once again as a reminder, since | use C ands@natax rather than the syntax
defined in AmiBroker helpitrade.MarginLoans the same adOT trade.MarginLoan
and&& is equivalent tAND. The statemeritrade.MarginLoarust means if
trade.MarginLoan equals zero.

Conclusion

That pretty much covers the use of the custom leatdt interface at all three levels.
While there are a number of object properties aathods | haven't mentioned or
used, this document is not intended to be a referearanual but rather an
introduction to using the interface. There showdcehough information here to allow
you to figure out the rest for yourself with a bittrial and error (as I've had to use
myself while writing this document).

Computer programming in any language can be a thagrbut at times extremely
frustrating, experience. After many hours of trytogget your "simple" piece of code
working properly, by which time you're ready to swven your grandmother's grave
that there has to be a problem with the languatgegreter or compiler, almost
invariably the problem is in your own code. It abble as simple as a missing
semicolon, or as complex as a complete misundelistgrabout how something is
supposed to work. But as Eric Idle once said, ablagk on the bright side of life.
The good thing about an extremely frustrating peabis that it feels SO good once
you finally figure it out!

Appendix A - DayCount Function

The code for the DayCount function used to caleuliaé number of calendar days
between two date/time values is below. This inctudeth entry and exit days in the
count. It consists of two functions, the DayCoumdtion itself, and a DayInYear
function to calculate the current day number irearyfor a particular date.

Firstly, the DaylnYear function:

function DayInYear(yday, ymonth, yyear)

{
doy = yday; /' Set number of days to curremnt da
for (i=1; i < ymonth; i++) /I Loop over all omths before this one

switch (i) /[Sum number of days in eacmitho

{

case 1:
case 3.
case 5:
case 7.
case 8:
case 10:
case 12:
doy = doy + 31; break; /[Monthgw81 days
case 4.
case 6:
case 9:
case 11:
doy = doy + 30; break; /[Monthgw80 days
case 2:
{
doy = doy + 28; I/l February nonglg@ar
if (/(yyear % 4) && yyear = 2000)
doy++; /I February leap year
break;

}
}
}

return doy; /I Return day in year, startingra
}

This gets called by the DayCount function for bittl entry and exit days.

Now the DayCount function:

function DayCount(inDay, outDay)

{

in = DateTimeConvert(0, inDay); // Convert griv DateNum format
out = DateTimeConvert(0, outDay); /I Converit elate

iyy = int(in / 20000) + 1900; Il Get entry year

imm = int((in % 10000) / 100); // Month

idd = in % 100; /I Day

doyi = DayInYear(idd, imm, iyy); // Calculatetey day in year

oyy = int(out / 10000) + 1900; Il Get exit year
omm = int((out % 10000) / 100); // Month

odd = out % 100; /I Day

doyo = DayInYear(odd, omm, oyy); /I Calculaxgt elay in year
days = 0; /I Initialise days between to zero
for (i = iyy; i < oyy; i++) /I Loop from entryear to < exit year

if (1(1 % 4) && i '=2000) /Il Ifis a leayyear

days = days + 366; /I Has 366 days
else
days = days + 365; /I Else has 365 days

}

days = days + doyo - doyi + 1; /l Days/yeassmuit minus entry day
/I Plus one to include both dates

return days; /I Return total days between dates

Appendix B - Using DebugView

This appendix discusses the use of the Microsdtrisgrnals program DebugView
for debugging AFL applications. DebugView can béagied from the Microsoft
website here:

http://www.microsoft.com/technet/sysinternals/Miémeeous/DebugView.mspx

When you run the program, you will get a windowelikis:

% Debug¥iew on ' {local) -10] x|
File Edit Capture ©Options Computer Help

EEHE | L - A EBEBE| T | M

i | Time | Debug Print =
a 11:08:28 [3304] [11:08:28] IH:PING

1 11:08:28 [3304] [11:08:28] IN:PING

2 11:08:28 [3304] [11:08:28] QUT:PONG {0 m=)

3 11:08:28 [3304] [11:08:28] QUT:PONG {0 m=)

4 11:08:418 [3304] [11:08:48] IN:PING

= 11:08:48 [3304] [11:08:48] IH:PING

f 11:08:48 [3304] [11:08:48] OUT:PONG {0 m=)

7 11:08:418 [3304] [11:08:48] OQUT:PONHG (0 m=)

g 11:09:28 [3304] [11:09:28] IN-PING

9 11:09:28 [3304] [11:09:28] INH:PING [
10 11:09:28 [3304] [11:09:28] QUT:PONG {0 m=)

11 11:09:28 [3304] [11:09:28] OUT:PONG {0 m=)

12 11:09:48 [3304] [11:09:48] IH:PING =
A | LIT;:

The display area is where your AFL application waite to using _ TRACE
statements. Note though, as can be seen abovegptlmaapplication may not be the
only thing sending data to the viewer. DebugViepwtuees all data sent to the viewer
from all running applications.

The main toolbar controls are:

& Debug¥iew on ' {local} =10 x|

File Edit Capture Options Computer Help

EEHd | R &=+ A EBO| 2F | #A

& ALk [Debug eridf A K N w
Save LogTo Clear Time Filter & Search
File Display Format Highlight
Auto-
Scroll
1| | 3

The Clear Display button is the one you'll likelseuthe most while debugging an
application. And as with most applications, you oauti-select lines in the output

display and use Edit->Copy (Ctrl+C) to copy thenthe Clipboard for pasting into
another application for further analysis.

Using The AFL _ TRACE Statement

To output messages to the viewer from your AFL ¢caaguding from custom
backtest procedures, you use the _TRACE statement:

_TRACE("Entered 'j' for loop");
You can concatenate strings simply by "adding” thegether:
_TRACE("Processing symbol " + trade.Symbol);

To include the value of parameters in the messagethe StrFormat function the
same as for Plot statements:

_TRACE(StrFormat("Buying " + sig.Symbol + ", priee%01.3f", sig.Price));

A sample trace while testing the first low-levebexple given in this document:

|Time |Debug Frint

0 11:39:36 [4028] Scaling in AQP at bar 159, entry walus = 9056.000

1 11:39:36 [4028] Profit = 9395 600, Valus = 18451 .600. price = 6.950, =scaleSize = 4528.000

2 11:39:36 [4028] Scaling in AQP at bar 188, entry walue = 13580.450

3 11:39:36 [4028] Profit = 15137 801, Value = 28718 250, price = 8. 200, =scaleSize = 6790.225

4 11:39:36 [4028] Scaling in AQP at bar 250, entry walus = 20370.049

5 11:39:36 [4028] Profit = 21211 803, Value = 41581 852, price = 10.100. scaleSize = 10185.024
6 11:39:38 [4028] Scaling in AQP at bar 1525, entry value = 19239 920

7 11:39:38 [4028] Profit = 19941 680, Valus = 39181 602, price = 13 260, scaleSize = 9619 960
8 11:39:38 [4028] Scaling in AQP at bar 1546, entry walue = 28853 420

9 11:39:38 [4028] Profit = 29165 680, Value = 58019.098, price = 15.480, =scaleSize = 14426 .710
10 11:39:38 [4028] Scaling in AQP at bar 1573, entry valus = 43265 2932

11 11:39:38 [4028] Profit = 43525 707, Value = 86791 .000. price = 19.020. scaleSize = 21632 646

That output was produced by the following codehim ¢ustom backtest procedure:

isSAqp = trade.Symbol == "AQP";
if (IsAqp)
_TRACE(StrFormat("Scaling in " + trade.Symbdl at bar %1.0f, entry value = %1.3f", i,
trade.GetEntryValue()));
scaleSize = trade.GetEntryValue() / 2;

if (isAgp)

_TRACE(StrFormat("Profit = %1.3f, Value = %1,.Bfice = %1.3f, scaleSize = %1.3f",
trade.GetProfit(), trade.GetPositionValue(), tr&#Price(i, "C"),
scaleSize));

bo.ScaleTrade(i, trade.Symbol, True, trade.GetRyit@"), scaleSize);

Remember that as newlines are considered whitedpathe language, one
statement can be spread over multiple lines fatak#ity without affecting its
operation. The only thing to be aware of is whes@ngle string inside double quotes
needs to span multiple lines. White space in agis treated as exactly what it is, so
if you put a line break in the middle of it, youll&nd up with a line break in your
output (this is not true in all languages, but ihvAFL as far as tracing goes).
Instead, you can split it into two strings and @ieoate them:

_TRACE(StrFormat("Profit = %1.3f, Value = %1.3fjqe = %1.3f, " +
"scaleSize = %1.3f", trade.GetProfit(),
trade.GetPositionValue(), trade.GetPrice(i, "C"),
scaleSize));

In the end though, this is only for readability poses. As far as the language goes, it
doesn't matter if a single line is 1000 charadtang and scrolls off the right-hand end
of the screen. It just makes it more difficult &ad the line when you're working on
that part of the code.

There's little else that can be said about usingug¥iew for debugging your AFL
code. Debugging is something of an art, and knowihgt sort of information to

trace at which parts of the code is something lygatl better at the more you do it.
Too little information and you can't tell what'spip@ning. Too much and it can be like
looking for the proverbial needle in a haystack.

Appendix C - Lichello AIM Algorithm

The AIM algorithm is a monthly long positiaigorithm that buys as
prices fall and sells as prices rise. lint@ns a position control
amount and then uses a buy safe and $elpsacentage to determine
how much to buy or sell each month.

Each stock is treated separately, witlovte amount of allocated
funds. This can be split into an initiakgliase amount, which
becomes the initial position control amquamd a cash component.
These are the only funds available forstoek. On the last bar of
each month, the algorithm below is followed

- Is the current portfolio value highernithe position control?

- If so, check if sell any, if not, chedlouy any.

- If sell, calculate Value*(1-sellSafe)-itamControl. That is
the dollar value of sale.

- If buy, calculate positionControl-Valué*buySafe). That is
the dollar value of purchase.

- Check if the amount is greater than theimmum trade value.

- If sell, check if already maximum castanae and do vealie if so.
Vealie is just add sellValue/2 to positmontrol. Otherwise sell
specified amount as scale-out.

- If buy, check if sufficient funds availablf not, reduce
purchase to remaining funds value (mimmakerage). If that is
still greater than minimum trade, cafi btiy. Buy calculated
value of shares as scale-in. Increasii@ogontrol by buyValue/2.

- Adjust cash balance of stock to allowdbare sale or purchase,
including brokerage.

This implementation adds the following:

- Buy signal for initial purchase basedrelative positions of three
EMAs and slope of the longest period one.

- After initial purchase, scale-in and sealit used for all trades.

- Maximum loss stop used to sell out posiif maximum loss reached.

- Buy signals have random score to helfpp Wibnte Carlo testing.

As the only sell signal is the maximum leg¥p, once the initial
equity has been used up in buying stockstlagir cash balances, no
more stocks will be bought until one of fhechased ones has been
stopped out.

This routine tracks the stock quantity aadh balance of each
stock independantly of the backtester dbjewvill prevent
purchases of new stocks if no cash is abkaleven though the
backtester may still show a positive oMerash balance, as the
backtester cash balance includes the casides of each of the
purchased stocks. In other words, the pashof each stock
position is still kept in the backtester@sh balance but is
reserved for just that one stock untildtgysold if stopped out.

The whole AIM algorithm is implemented hetlow-level custom
backtest procedure. The main AFL codeguo#iects the parameters
and passes them as static variables toustem backtest procedure,
and sets up the initial Buy array basedhenEMA conditions.

For more information on the AIM algorithmesthe website:

http://www.aim-users.com

and follow the links "AIM Basics" and "AlNMnprovements".

/* Check if the last bar of a calendar month .

Checks if the passed bar is the last barazflendar month (which does not necessarily
mean the last day of the month). It does this Bcking if the next bar is in a different
month. As it has to look ahead one bar for thataitnot check the very last bar, and will
always report that bar as not being thedas of the month.

"dn" is the DateNum array
"bar" is the bar to check

*/
function ISEOM(dn, bar)
{

rc = False;

if (bar >= 0 && bar < BarCount-1)

mm = Int((dn[bar] % 10000) / 100);
mmn = Int((dn[bar+1] % 10000) / 100);
rc = mmn != mm;

}

return rc;

}

SetCustomBacktestProc(™);

if (Status("action") == actionPortfolio)

{
bo = GetBacktesterObject();
bo.PreProcess();
totalCash = StaticVarGet("totalCashG");
iniPos = StaticVarGet("iniPosG");
iniCash = StaticVarGet("iniCashG");
buySafe = StaticVarGet("buySafeG");
sellSafe = StaticVarGet("sellSafeG");
minTrade = StaticVarGet("minTradeG");
maxCash = StaticVarGet("maxCashG");
maxLoss = StaticVarGet("maxLossG");
brok = StaticVarGet("brokG");
monteCarlo = StaticVarGet("monteCarloG");
dn = DateNum();
for (i = 0; i < BarCount-1; i++)

if (ISEOM(dn, i))
{

/I Mordghpassed bar
/I Mth of next bar
/I End of month if not same

/I Start of custom bestkprocedure

/I @ktbal static variables

/I Array for finding end of ntbn
/I For loop evall bars

/I Scale trades only @st bar of month

for (trade = bo.GetFirstOpenPos(); éradade = bo.GetNextOpenPos())

{

gty = StaticVarGet("qty"+trade.Syol)p // Current quantity for stock

poCo = StaticVarGet("poCo"+traderthypl); // Current position control for stock
cash = StaticVarGet("cash"+tradeBgl);// Current cash balance for stock
value = trade.Shares*trade.GetRit€"); // Current stock value

profit = trade.GetProfit();
bprice = trade.GetPrice(i+1, "C");

/I Cant trade profit

/ Hotential buy price (tomorrow's price)

sprice = trade.GetPrice(i+1, "C"); / Hotential sell price (tomorrow's price)
if (profit / (iniPos + iniCash) axLoss) // If maximum loss reached

bo.ExitTrade(i, trade.Symbalise, 1); // Exit trade (stopped out)

exitVal = cash + gty*spricerok; /I Cash balance after sale
totalCash = totalCash + exitVal /I Update total system cash
}
else
if (value > poCo) /I Increased/alue, so look to sell
toSell = value * (1 - sdf8) - poCo; // Value to sell
sshares = Int(toSell / sgyj /I Number of shares to sell
if (sshares >= qty || tdSel minTrade) // If more than min or all remaigi
if (sshares > qty) /&r@ sell more than have
sshares = qty;
sval = sshares * spgrice /I Actual value to sell
if (cash < maxCash) If/lon't already have max cash
if (cash+sval > ash) /I If sale will give more than max cash
{
sval = maxCagfash; /I Reduce sale to end with max cash
sshares = wa(g sprice);
sval = ssharegrice;
}
ishares = trader8ha /I Number of shares have now
bo.ScaleTrade@gde.Symbol, False, sprice, sval); // Sell the share
soldShares = isharrade.Shares; // Number of shares sold
if (soldShares > 0) /I If actually sold some
tval = soldSés* sprice; /I Value of shares sold
StaticVarSetf'trtrade.Symbol, trade.Shares); // Store remgimjty
StaticVarSe#sb"+trade.Symbol, cash+tval-brok); // And cash
}
}
else /I Have max cdsbaaly so do a vealie
StaticVarSet("po@trade.Symbol, poCo+toSell/2); // The vealie
}
}
else /I Decreased in valudpsé to buy
{
toBuy = poCo - value * (IbtiySafe);// Value to buy
if (toBuy > cash-brok) f don't have enough cash
toBuy = cash-brok; /edRice buy to remaining cash
if (toBuy >= minTrade) /t dreater than minimum trade value
{
bshares = Int(toBuyptibe); /I Number of shares to buy
bpos = bshares * bprice /I Actual value of shares to buy
ishares = trade.Shares; /I Number of shares have now

bo.ScaleTrade(i, tr&jenbol, True, bprice, bpos); // Buy the shares

boughtShares = tradat&# - ishares; // Number of shares bought

if (boughtShares > 0) If/actually bought some

{
tval = boughtShatdprice; /I Value of shares bought
StaticVarSet("gtyrade.Symbol, trade.Shares); // Store new quantit
StaticVarSet("po@t‘ade.Symbol, poCo+tval/2); // New pos control
StaticVarSet("castnade.Symbol, cash-tval-brok); // And cash

}

}
}

} /I End of for loop over open positions

}
for (sig = bo.GetFirstSignal(i); sig; sighe.GetNextSignal(i)) /I Check new buys

{

doBuy = !ImonteCarlo; /I See if ignooe Monte Carlo testing
if (monteCarlo)
{

rand = Random();

doBuy = rand[i] >= monteCarlo; "fhonteCarlo" is prob of ignoring buy

if (doBuy && IsNull(bo.RdOpenPos(sig.Symbol)) && sig.ISEntry() && sig.Ishg()

&& sig.Price > 0) /I Can take initial entry sigrfal stock
{
icash = iniPos + iniCash; /I Initash value for stock position
if (totalCash < icash) /I Ignoreniit enough portfolio cash
break;
ishares = Int((iniPos-brok) / sigce); /I Initial number of shares to buy
ipos = ishares * sig.Price; /I Veahf shares to buy

bo.EnterTrade(i, sig.Symbol, Trsig,Price, ipos); // Buy the shares

trade = bo.FindOpenPos(sig.Symbol); // Find trade for shares just bought
if (IsNull(trade))

{

tval = trade.GetEntryValue(); Value of shares

tshares = trade.Shares; /I Nemolp shares
StaticVarSet("qty"+sig.Symbishares);// Store number of shares
StaticVarSet("poCo"+sig.Symbtuhl); // And position control (share value)
cash = iniCash+iniPos-tval-hrok /I Stock cash balance after purchase
StaticVarSet("cash"+sig.Symiwaish); // Store cash balance for stock
totalCash = totalCash-iniCasifros; // Subtract from portfolio cash

}

}
} /I End of for loop over buy signals
bo.HandleStops(i); /I Shouldn't be any stop
bo.UpdateStats(i, 1);
bo.UpdateStats(i, 2);
/I End for loop over bars

for (trade = bo.GetFirstOpenPos(); trade; trad®.GetNextOpenPos())

{

}

/I For all open positions at end of test
gty = StaticVarGet("qty"+trade.Symbol); MNumber of shares remaining
poCo = StaticVarGet("poCo"+trade.Symbol); Afd position control
cash = StaticVarGet("cash"+trade.Symbol); Afd stock cash balance
trade.AddCustomMetric("Shares", qty); // dAals metrics to trade list
trade.AddCustomMetric("Value", gty*trade iBace(BarCount-1, "C"));
trade.AddCustomMetric("PosCtrl", poCo);
trade.AddCustomMetric("Cash", cash);

for (trade = bo.GetFirstTrade(); trade; tradeo=GetNextTrade())

{

}

/I For all closed (stopped out) trades
poCo = StaticVarGet("poCo"+trade.Symbol); Flhal position control
cash = StaticVarGet("cash"+trade.Symbol); AAd cash balance
trade.AddCustomMetric("Shares", 0); /I AaRImetrics to trade list
trade.AddCustomMetric("Value", 0);
trade.AddCustomMetric("PosCtrl", poCo);
trade.AddCustomMetric("Cash", cash);

bo.PostProcess();

/I End of custom backtest procedure

1 Start of main AFL code

totalCash = Param("1. Total Cash (000)?", 20, 000110); // Get parameters
totalCash = totalCash * 1000;

iniPos = Param("2. Initial Position (000)?", 10100, 1);

iniPos = iniPos * 1000;

iniCash = Param("3. Initial Cash (000)?", 10, 00,1D);

iniCash = iniCash * 1000;

buySafe = Param("4. Buy Safe?", 10, 0, 100, 1);

buySafe = buySafe / 100;

sellSafe = Param("5. Sell Safe?", 10, 0, 100, 1);

sellSafe = sellSafe / 100;

minTrade = Param("6. Minimum Trade?", 500, 0, 1QQ@M);
maxCash = Param("7. Maximum Cash (000)?", 100000.110);
maxCash = maxCash * 1000;

maxLoss = Param("8. Maximum Loss%?", 20, 0, 100, 1)
maxLoss = maxLoss / 100;

brok = Param("9. Brokerage?", 30, 0, 100, 1);

monteCarlo = Param("10. Monte Carlo%?", 0, 0, 109,
monteCarlo = monteCarlo / 100;

if (monteCarlo) /I Probability of ignoring buy féionte Carlo
Optimize("monteCarlo", 0, 0, 100, 1); // Fonning Monte Carlo test

SetOption("InitialEquity", totalCash);
SetOption("CommissionMode", 2);
SetOption("CommissionAmount”, brok);
SetTradeDelays(0, 0, 0, 0);

StaticVarSet("totalCashG", totalCash); /I Set glathatic variables
StaticVarSet("iniPosG", iniPos);

StaticVarSet("iniCashG", iniCash);

StaticVarSet("buySafeG", buySafe);

StaticVarSet("sellSafeG", sellSafe);

StaticVarSet("minTradeG", minTrade);

StaticVarSet("maxCashG", maxCash);

StaticVarSet("maxLossG", maxLoss);

StaticVarSet("brokG", brok);

StaticVarSet("monteCarloG", monteCarlo);

el = EMA(Close, 30); /I EMA initial buy conditions
e2 = EMA(Close, 60);

e3 = EMA(Close, 180);

e3s = LinRegSlope(e3, 2);

bsig=e3s>0&& el >e2 && e2 > e3;

Buy = bsig;

Sell = False; /I Only maximum loss stop to sell
PositionSize = 0; /I Calculated in custom routine
PositionScore = Random(); /I Random position staréacktesting

The default parameters specified here are the Aiiidard values, with $10K initial
position, $10K cash, and 10% buy and sell safesy€&alies, the maximum cash
balance for a stock defaults to $100K. To experimeéth this algorithm in the
manner it was intended, try it on individual stotikat have had significant swings
but no overall trend. Strongly uptrending stockl give the best results as the

parameters approach buy and hold, with initial Gasth buy safe of zero, and sell safe
of 100%.

Note that the code us&rade.Shares*trade.GetPrice(i, "GOy the current value, not
trade.GetPositionValud hat's because the latter function use's thequs\bar's
closing price to determine the current value, wagnge want the current bar's price
(it's assumed that buy/sell tests are made aftecltse of trading). The actual prices
then used are the next bar's prices, to mimic ngatkia trade the next trading day.
Trade delays are set to zero to avoid confusioncandlict.

To run this code, copy everything in blue to an A& and then run it with the
backtester. If you run it over a single stock,teettotal cash value to be the sum of
the initial position and initial cash values (trefalilt setting), otherwise the backtest
report won't give a realistic result for the petegye return (most of the cash would
never have been invested so would have zero gathdbcomponent unless an
annual interest rate was set). If running it ovpo#folio, set the total cash value to
be some multiple of the two initial values to alltdvat many positions to be entered
simultaneously. Running it over a large watchlisstocks will only pick a few
positions, depending on the total cash availabiiy mew positions subsequently only
being opened if others are stopped out (note fleattaximum loss stop is not part of
the AIM algorithm, it's my own addition).

If the backtester results report the trade lisretwill only be one entry for each
position, no matter how many times it scaled in and However, if it got stopped
out and the same stock subsequently purchased, dggtinvould show as two trades
in the list. To see all the scale in and out trades the backtest in Detailed Log
mode.

At the end of a backtest, the final quantity ofrelsatheir value, the position control,
and the cash balance figures are added to the Dtgdets as custom metrics (one or
two will be the same as existing metrics thoughthé trade was closed, the quantity
will be zero.

The parameters include a percentage for Monte @astong. This is the probability

of ignoring any particular new buy signal. A valezero means all buys will be
taken, subject to cash availability, while a vadid 00 means none will be. The value
shouldn't be set too high otherwise the resultitrbg unrealistic due to a sparsity of
trades taken. I'd suggest a value up to 50%, V&% Being what | typically use
myself. The less buy signals there are in the Brayathe lower the value needs to
be to avoid giving unrealistic results. To run ari#Carlo test, set a percentage
value and then run an optimisation. The randomtioSicore array also helps with
Monte Carlo testing.

Finally a disclaimer: while I've made every attempt to ensure this abiye
implements the AIM algorithm as | have specifiedha comments and
accompanying text, | can't guarantee that ther@@rrors or omissions or that this
does in fact implement the algorithm correctlyal/a presented it here primarily as a
more advanced example of a custom backtest proeeand all use is at your own
risk. However, if you do find any errors, pleasente know.

